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Abstract. This paper proposes an ant colony optimization hybrid
heuristic (ACH) for the total earliness tardiness single machine schedul-
ing problem where jobs have different processing times and distinct due
dates, and the machine can not be idle. ACH is an ant colony system
with daemon actions that intensify the search around good quality
solutions. The computational results show the effectiveness of ACH.
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1 Introduction

The globalization of the world’s economy along with the internet’s development
have induced many changes in today’s industries. These changes have shifted
the industry from mass to just-in-time production. Subsequently, competitors
are now forced to satisfy their customers’ demands as close as possible to their
due-dates. Missing a demand’s due-date may result in the loss of the customer
or in penalties whereas satisfying a client’s demand earlier than its due-date
may cause unwanted inventory or product deterioration. Thus, companies need
to minimize the total earliness tardiness (TET) of scheduled jobs.

The NP hard single machine TET scheduling problem, 1|dj |
∑

Ej + Tj , con-
sists in searching for an optimal sequence of a set N = {1, . . . , n} of independent
jobs to be scheduled on a single machine. Each job is characterized by its pro-
cessing time pj and due date dj . All jobs are ready for processing at time zero
and job preemption is not allowed. Furthermore, no idle time is allowed on the
machine whose capacity is limited compared to demand. For a particular permu-
tation of N, the completion time Cj of job j, j ∈ N, is the sum of the processing
times of the subset of jobs that precede j including j. Job j is early if Cj ≤ dj

with earliness Ej = max{0, dj − Cj}, but is tardy if Cj > dj with tardiness
Tj = max{0, Cj −dj}. To be on time, jobs with close due dates have to compete
for the same time slot [3]. Thus, only small sized instances of the mixed integer
linear model of the problem can be solved exactly [14].

The 1|dj |
∑

Ej + Tj problem has been tackled using exact and approximate
algorithms. Exact methods are based on dynamic programming [1] and branch
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and bound [12] whereas approximate ones are based on dispatching rules and
metaheuristics. Ow and Morton [15] present a filtered beam search –with no
backtracking– that uses a linear and an exponential priority rule to guide the
search. Almeida and Centeno [3] combine tabu search, simulated annealing, and
hill climbing to generate near optima. Ventura and Radhakrishnan [20] apply
Lagrangean relaxation and subgradient optimization to their binary formulation.
Valente and Alves [18] design a dispatching rule and a greedy algorithm based
on a lookahead parameter. Valente and Alves [19] compare their filtered and
recovering beam search to existing heuristics. Finally, M’Hallah [14] proposes a
hybrid heuristic (HH) that combines local (dispatching rules, hill climbing and
simulated annealing) and global (genetic algorithms) search.

This paper tackles the 1|dj |
∑

Ej + Tj using a heuristic inspired from ant
colony optimization (ACO). ACO, which mimics the foraging behavior of real
ants [2], converges to optimality under certain conditions [8]. It has been suc-
cessfully applied to a large variety of combinatorial optimization problems [4]
including single machine [6], flow shop [21], and job shop [10] scheduling. Its
widespread application is due to its success in addressing the two competing
goals of metaheuristics: exploration and exploitation. Exploration or evolution
allows diversification of the solution space whereas exploitation or learning pre-
serves the good parts of near optima and intensifies the search around them.

Section 2 explains the basic mechanisms of ant colony algorithms. Section 3
details the proposed heuristic. Section 4 tunes its parameters and evaluates its
performance. Finally, section 5 is a summary.

2 Ant Colony Algorithms

ACO mimics the behavior of real ants, which are known for their complex so-
cial behavior and cooperative work despite their blindness [5]. Ants identify
the shortest path between their nest and a food source without using any vi-
sual cue [7]. They exchange information regarding a food source by laying, on
their path between their nest and a food source, an odorous chemical substance,
pheromone. Different ants searching for food at a later time sense the pheromone
left by earlier ants and tend to follow a trail with a strong pheromone concen-
tration in hope that it leads them to a food source fast. They choose their path
by a probabilistic decision biased by the amount of pheromone: the larger the
amount of pheromone on the trail, the higher the probability that ants follow
it. In the absence of a pheromone trail, ants move randomly. As time evolves,
shorter paths between the nest and a food source have a high traffic density
whereas pheromone evaporates along low-density paths. This behavior leads to
a self-reinforcing process, which in turn leads to the identification of the shortest
path between the nest and a food source [2].

The most frequently applied ACO algorithms are the ant system (AS) and the
ant colony system (ACS). When applied to the traveling salesman problem [8],
AS positions a set A of ants randomly on the network. An ant h ∈ A moves from
a node i to a node j according to a probability ph

ij , which depends on ηij , the
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arc’s attractiveness according to its contribution toward the objective function,
and on πij , the learned desirability of moving from i to j :

ph
ij =

⎧
⎨

⎩

πα
ijη

β
ij/(

∑

j′∈Nh
i

πα
ij′η

β
ij′ ) if j ∈ Nh

i

0 otherwise,
(1)

where Nh
i is the feasible set of destinations of h when located at node i, and

α and β are two parameters that weigh the relative importance of πij and ηij .
Once all ants have completed their tours, the length of each tour is evaluated,
and the pheromone amounts on the network are updated using evaporation
and deposit. Evaporation reduces all pheromone amounts on the network by a
constant evaporation rate ϕ ∈ (0, 1] :

πij = (1 − ϕ)πij . (2)

Pheromone deposit increases the pheromone level of each traveled network arc
(i, j) :

πij = πij +
∑

h∈A
Δπh

ij . (3)

That is, every time an ant h ∈ A travels (i, j), πij increases by Δπh
ij , which is

a function of zh, the solution value of h. Subsequently, AS repositions the ants
randomly in the system where ant h ∈ A moves from i to j according to the
updated ph

ij . The process is repeated until the stopping criterion is met.
AS does not use any centralized daemon actions; i.e., actions not performed

by the ants but by an external agent [7]. For real ants, daemon actions can be the
wind moving a food source closer or further, floods forbidding some paths, etc.
[7]. In artificial systems, daemon actions can be simple such as depositing addi-
tional pheromone along the path followed by the incumbent, or more elaborate
such as local search procedures to improve the population’s fitness, to prohibit
some paths, or to reinforce a set of complex constraints [6,7,17].

ACS is a more sophisticated version of AS combining exploration and ex-
ploitation [5,16] . Ant h ∈ A moves from i to j according to ph

ij , which reflects
a trade-off between the exploration of new connections and the exploitation of
available information [7]. ACS generates a random number q and compares it to
q0, an ACS parameter. If q ≤ q0, then ACS chooses j such that

πα
ijη

β
ij = max

j′∈Nh
i

{πα
ij′η

β
ij′} (4)

i.e., ACS exploits the available knowledge, choosing the best option with respect
to the weighted heuristic and pheromone information. Otherwise, ACS applies
a controlled exploration as in AS; i.e., it computes ph

ij using (1). Once all ants
have completed their tours, ACS updates the pheromone levels using (2) and
(3). In addition, to diversify the solution space and avoid premature conver-
gence, ACS applies an online step-by-step pheromone trail update (including
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both pheromone evaporation and deposit) [7]. Each time ant h moves from i to
j, ACS decreases the pheromone amount on the arc (i, j) making it less attractive
to the following ants:

πij = (1 − ϕ)πij + ϕπ0,

where π0 is a lower bound on the pheromone amount along (i, j). Finally, to
exploit the available information, ACS applies a daemon action which updates
the pheromone level along the path traveled by the ant corresponding to the
current incumbent solution.

Different variations of AS and ACS have been applied to scheduling problems.
Liao and Juan [11] introduce a new initial pheromone trail parameter to ACO
and apply it to the single machine weighted tardiness scheduling problem with
sequence-dependent setup times. Tasgetiren et al. [17] test a swarm optimization
algorithm, that uses a smallest position value and variable neighborhood search
(VNS) as daemon actions, on the permutation flow shop problem with the ob-
jective of minimizing both the makespan and the total flow time. Gutjahra and
Rauner [9] apply ACO to a dynamic regional nurse scheduling problem where
the daily assignment of pool nurses to public hospitals takes into account many
soft and hard constraints (eg., shift dates and times, working patterns, nurses
qualifications, nurses and hospitals preferences, and costs). Ross and Dini [16]
propose an ACS for a flexible manufacturing system in a job-shop environment
with routing flexibility, sequence-dependent setup and transportation time. Lo
et al. [13] present a modified AS for the precedence and resource-constrained
multiprocessor scheduling problems where AS solves the scheduling problems
while a dynamic heuristic assigns jobs to processors, and satisfies the time-
dependency structure. Herein, an ant colony heuristic (ACH) is proposed for
the 1|dj |

∑
Ej + Tj.

3 The Proposed Heuristic

ACH assimilates the move of an ant from i to j to assigning job j to position i.
An ant stops when it schedules all n jobs. Initially, the system constructs A by
choosing m = |A| random sequences of the n jobs, and assigning each of them to
an ant. It evaluates zh, the TET of ant h, h ∈ A, and identifies the best current
solution h∗ whose value z = min

h=1,m
{zh}.

ACH quantifies its acquired knowledge about the problem by setting πij equal
to the proportion of times job j appears in position i in the best m/5 ants of the
current generation. It then builds m new artificial ants. It sets ant h, h ∈ A,
equal to the empty sequence, and Nh

1 = N, where Nh
i is the set of candidate

jobs for position i for ant h, which has the ordered set of jobs N
h

i−1 assigned in

positions 1, . . . , i − 1. That is, Nh
i

⋃
N

h

i−1 = N.
For ant h, the assignment of job j to position i depends on the acquired

knowledge πij and the assignment’s attractiveness

ηij = 1 − (Ej + Tj)/ max
j′∈Nh

i

{Ej′ + Tj′}. (5)
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ACH draws a random number q from the continuous Uniform[0,1], and compares
it to q0, a threshold level for intensification. If q ≤ q0, ACH chooses j according
to (4); otherwise, it opts for the best local option choosing the job j with the
largest opportunity; that is, ηij = max

j′∈Nh
i

{ηij′}. It defines the set of jobs that

remain to be positioned setting N
h

i = N
h

i−1 \ {j}, and the set of positioned jobs
as Nh

i+1 = Nh
i

⋃{j}. It continues this process till all jobs have been assigned.
Subsequently, ACH updates the learned desirability πij using pheromone

evaporation and deposit. If job j is assigned to position i, then ACH sets

πij = (1 − ϕ)πij + ϕ(1 − (Ej + Tj)/zh). (6)

The amount of pheromone deposited is proportional to the impact of assigning
j to i on zh. The smaller (Ej + Tj) relative to zh, the higher is the amount of
pheromone deposited.

Once the m ants are obtained, the populations of the current and the previous
generations are merged, and the best m ants are retained for further investiga-
tion. Indeed, each of the best m ants is subject to an intensified search. Ant
h, h ∈ A, is subject to (n − 1) two-opt swaps. If any of the n − 1 neighbors
improves zh, then it replaces h in the current generation. This intensification
step, or daemon action, is needed to speed ACH’s convergence.

Finally, ACH applies a global pheromone update. For every (i, j), it evapo-
rates the pheromone using (2), and deposits Δij , where Δij is the proportion of
times j has been assigned to i in the best m/5 ants of the current generation.
Subsequently, ACH updates h∗ and z, and repeats these steps for a prefixed
number of generations, ng. A summary of ACH is given in Algorithm 1.

4 Computational Results

The objective of the computational experimentation is twofold: (i) to tune ACH’s
parameters and investigate their impact on ACH’s performance, and (ii) to com-
pare ACH’s performance to a standard ACO algorithm (AS) and to the solutions
obtained by Cplex. ACH and AS are coded using Fortran, under the Microsoft
Developer Studio platform whereas Cplex is evoked from GAMS. All computa-
tion is undertaken on a Pentium IV 3.0 GHz and 512 MB of RAM.

To tune ACH’s parameters, we set n = 10, 20, 30; ng = 10, 50, 100, 300; m =
100, 500, 1000, 2000, 5000, 10000; q0 = .1, .3, .5, .7, .9; ρ = .1, .3, .5, .7, .9; and
(α, β) = (1, 1), (1, 2), (2, 1). For each possible combination of these parameters
and level n, we generate ten instances as in [15]; that is, the processing times
and due dates are random integers from the Uniform [1, 12], and [.65p, 1.15p],
respectively, where p =

∑

j∈N

pj. We run each instance ten times using ACH, and

compute RT, the average run time (in seconds) over the ten replications, and
the performance ratio r = z/z∗, where z is ACH’s average solution value over
the ten replications, and z∗ is the exact solution value obtained via Cplex.
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Algorithm 1. Detailed algorithm of ACH

Initialization
1. For h = 1, . . . , m

(a) Set ant h to a random permutation of the n jobs.
(b) Compute zh, the total earliness tardiness of h.

2. Set z = min
h=1,m

{zh}, and h∗ the ant whose zh∗ = z.

3. Set g = 1.
4. Set πij , the learned desirability of assigning job j to position i, to the proportion

of times job j appears in position i in the best m/5 ants of the current generation.
Iterative Step

1. For h = 1, . . . , m

(a) Set Nh
1 = N, N

h
0 = ∅.

(b) For i = 1, . . . , n
– Generate a random number q from the continuous Uniform[0,1].
– If q ≤ q0, choose j according to (4); else, choose j � ηij = max

j′∈Nh
i

{ηij′}.

– Set N
h
i = N

h
i−1 \ {j}, and Nh

i+1 = Nh
i

⋃{j}.
(c) Update πij using (6).

2. Choose the best m ants out of the m ants of the current generation and the m
ants of the previous generation.

3. For h = 1, . . . , m
(a) Generate (n − 1) neighbors of ant h using two-opt swaps;
(b) Choose the best out of the n solutions to replace h in the current generation.

4. Determine Δij , the proportion of times j has been assigned to i in the best m/5
ants of the current generation.

5. Set πij = (1 − ϕ)πij + Δij .
6. Update h∗ and z.
7. Set g = g + 1.

Stopping condition
If g > ng, stop; otherwise, goto the iterative step.

Figures 1 and 2 show that increasing ng and m improves r; thus improves
ACH’s opportunity to converge toward a global optimum; however, this occurs
at the cost of a larger runtime. They further indicate that setting ng = 300 and
m = 5000 seems a reasonable tradeoff between solution quality and runtime.
ACH is using a relatively large number of ants; however opting for m = 10 with
ng = 300 yields an average r equal to 1.065 versus 1.016 when m = 5000. This
is most likely due to the competition of the jobs for the same time slots on the
machine, and the resulting myopic decisions of the ants.

Figure 3 shows that there is no clear rule of thumb to privileging either the
accumulated knowledge or the local heuristic information for different population
sizes. For example, α = β = 1 is a better alternative when 4000 ≤ m ≤ 6000,
but is not the best strategy for lower or higher values of m. It is therefore
recommended that preliminary testing be undertaken prior to setting α and β.

Figure 4 displays the effect of q0 and ϕ on ACH’s performance. Even though
no clear rule of thumb applies, some general guidelines can be established. A high
ϕ may cause too much pheromone evaporation along good paths and too much
pheromone deposit along undesirable ones; thus, good quality knowledge may be
lost while myopic decisions are strengthened. Indeed, for TET, a “good” position
for a job strongly depends on the jobs assigned to the preceding positions. On the
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Fig. 1. ACH’s solution quality as ng and m vary (n = 20, α = β = 1, ϕ = 0.9, q0 = .1)
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Fig. 2. ACH’s Runtime as ng and m vary (n = 20, α = β = 1, φ = 0.9, q0 = .1)
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Fig. 3. ACH’s Performance as (α, β) varies (n = 20, ng = 300, q0 = 0.9, ϕ = 0.9)

other hand, a low ϕ limits the acquisition of new knowledge and relies heavily on
available information; thus, may cause premature convergence and stagnation
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Fig. 4. ACH’s Performance as q0 and ϕ vary (n = 20, α = β = 1, ng = 300, m = 5000)

of the algorithm. ϕ = 0.5 seems to offer a good balance between pheromone
evaporation and deposit; i.e., between maintaining prior knowledge and using
newly acquired information (obtained via heuristic information).

A high q0 enhances the use of available knowledge, and limits relying on local
search. It guides ACH toward the best decision according to a weighted version of
the accumulated (pheromone) and acquired (heuristic) knowledge. On the other
hand, a very low q0 encourages a guided exploration of the search space where
the search is biased towards more promising areas (guided by prior knowledge).
Despite few exceptions, setting q0 = 0.9, and ϕ = .5 seems to yields good results.

ACH’s runtime, whose evolution as a function of n is illustrated in Figure 5,
can be approximated by RT = .2127n2.2314 when m = 5000 and ng = 300.
Initially, ACH creates, evaluates, and sorts m ants. In addition, in each of the
ng generations, ACH undertakes the following steps. It creates another m ants,
where each ant requires n comparisons. It then sorts 2m ants in O(2mlog(2m)).
Finally, it applies a two-opt neighborhood search for each of the best m ants,
where each search requires (n − 1)nm operations. Subsequently, the number of
operations undertaken by ACH is O(2ng(n2 + m(n + log(2m)))).

The performance ratios for n = 10, 20, and 30 are on average around 1.01
when m = 5000, ng = 300, ϕ = 0.5, q0 = 0.9, and α = β = 1, with the average
r equaling the median. The average r is 1.00 for n = 10, 1.01 for n = 20 and
1.02 for n = 30. This is expected since m and ng are fixed; thus, the smaller the
problem size, the higher the chances of ACH to find the global optimum.

ACH’s convergence rate may be improved as follows. The initial sequences
being randomly generated in Step 1(a) of the initialization step of ACH may be
substituted by their best neighbors obtained via simulated annealing or tabu
search. In addition, in Step 3(a) of the iterative step, the n − 1 neighbors
can be obtained by applying a simulated annealing n − 1 times to the current
ant h.



Ant Colony Optimization 405

0

4000

8000

12000

16000

20000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 n

Run Time (seconds)

Fig. 5. ACH’sRunTimeasn increases (α = β = 1, ng = 300, m = 5000, q0 = .9, ϕ = .1)

1.00

1.02

1.04

1.06

1.08

1.10

0 2000 4000 6000 8000 10000 m

Performance
Ratio AS

ACH

Fig. 6. Comparison of ACH and AS’s performance as m increases (α = β = 1, ng =
300, q0 = .9, ϕ = .1, n = 20)

These modifications will intensify the search around promising areas and improve
the quality of the knowledge being propagated through ACH’s generations.

The comparison of ACH to AS shows that hybridization improved ACH’s
performance. The average improvement is 4.5% and reaches 5.4% when m =
1000; yet, this improvement is independent of the problem size. Figure 6 further
shows that ACH yields consistently better results than AS.

5 Conclusion

This paper proposes an ant colony optimization hybrid heuristic for the mini-
mum total earliness tardiness single machine scheduling problem with distinct
deterministic due dates. The heuristic is a modified ant colony system with dae-
mon actions that intensify the search in promising areas. The computational
results illustrate the heuristic’s good performance. The heuristic can be further
enhanced if implemented as a parallel algorithm.
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